专利摘要:
本专利公开了一种范德瓦尔斯非对称势垒结构的红外探测器。所述探测器结构包括衬底、介质层、石墨烯层、二硫化钼层、黑磷层和金属源、漏电极。器件制备步骤是将机械剥离的石墨烯、二硫化钼和黑磷依次转移到具有介质层的衬底上,运用电子束曝光和热蒸发等工艺分别在黑磷和石墨烯上制作金属源、漏电极,形成了垂直结构的范德瓦尔斯单载流子红外光电探测器。利用二维材料丰富的能带结构和独特的物理特性,设计了多子阻挡的非对称势垒能带结构,可以对暗电流进行有效的抑制,进而实现了中波红外的室温黑体探测、偏振探测和红外成像。该探测器具有室温工作、多子阻挡、中波红外响应、灵敏度高、响应快及黑体探测等特点。
公开号:CN214336728U
申请号:CN202022023610.7U
申请日:2020-09-15
公开日:2021-10-01
发明作者:胡伟达;陈允枫;王芳;王振;王鹏;汪洋;李庆;何家乐;谢润章;张莉丽;陈效双;陆卫
申请人:Shanghai Institute of Technical Physics of CAS;
IPC主号:H01L31-101
专利说明:
[n0001] 本专利涉及一种范德瓦尔斯非对称势垒结构的红外探测器,具体指一种中波红外的单载流子光电探测器。
[n0002] 单载流子光电探测器是为了解决红外探测器暗电流大的问题而提出的,使红外探测器实现在高温下工作。单载流子光电探测器的阻挡层需要严格考虑能带匹配和晶格匹配。在导带或价带存在较大的势垒来阻挡多数载流子,在另一个能带上设计了接近零的势垒,以使该能带上的载流子能够自由移动。因此,暗电流如表面泄漏电流和多子暗电流被势垒阻挡,而光电流没有被抑制。然而,传统材料外延生长不可避免地存在晶格失配和界面缺陷,严重阻碍了高性能单载流子光电探测器的发展。
[n0003] 为了解决上述问题,我们使用二维材料构造了非对称势垒结构的红外光电探测器。二维材料具有丰富的、可调的能带结构,可以满足能带设计的需求,并且表面自然钝化,避免了漏电流的产生。同时,不同的二维材料可以随意地堆叠,形成晶格匹配的范德华尔斯结,是设计新型光电探测器的理想材料。
[n0004] 本专利提出了一种范德瓦尔斯非对称势垒结构的红外探测器。该单载流子光电探测器使用黑磷作为窄带隙的吸收层,二硫化钼作为多子势垒层,高迁移率的石墨烯作为接触层。三个材料形成典型的空穴阻挡的能带结构,导带几乎没有势垒,然而在价带存在一个大的空穴势垒,可以阻挡石墨烯端空穴的注入,有效抑制了暗电流。单载流子光电探测器实现了截止波长为3.8微米的中波红外响应,室温黑体探测率达到2.3×1010cm Hz1/2W-1,并且实现了室温黑体偏振探测和室温红外成像。同时器件的响应速率达到了73微秒的快速响应。
[n0005] 本专利提出了一种范德瓦尔斯非对称势垒结构的红外探测器,实现了在室温黑体探测、偏振探测和红外成像等领域的应用。
[n0006] 上述专利将单载流子势垒结构引入二维材料探测器,该探测器基于能带结构的优化设计,利用势垒层对多子的阻挡,从而降低暗电流,可实现器件的高灵敏、高速率的室温黑体探测。
[n0007] 本专利指一种范德瓦尔斯非对称势垒结构的红外探测器及制备方法,其特征在于,器件结构包括:
[n0008] -衬底1,
[n0009] -介质层2,
[n0010] -石墨烯层3,
[n0011] -二硫化钼层4,
[n0012] -源极5,
[n0013] -漏极6,
[n0014] -黑磷层7。
[n0015] 其中衬底1为P型重掺杂的Si衬底;
[n0016] 其中介质层2为SiO2,厚度为280±10纳米;
[n0017] 其中石墨烯层3的厚度是5~10纳米;
[n0018] 其中二硫化钼层4厚度是10~20纳米;
[n0019] 其中金属源极5为Cr和Au电极,Cr在石墨烯层上厚度约为15纳米,Au 在Cr上厚度为75纳米;
[n0020] 其中漏极6为Cr和Au电极,Cr在黑磷层上厚度约为15纳米,Au在Cr上厚度为75纳米;
[n0021] 其中黑磷层7厚度是40~150纳米。
[n0022] 本专利指一种范德瓦尔斯非对称势垒结构的红外探测器及制备方法,其特征在于器件制备包括以下步骤:
[n0023] 1)通过机械剥离的方法从石墨体材料上剥离出石墨烯层在SiO2介质层上;
[n0024] 2)通过机械剥离的方法从二硫化钼体材料上剥离二硫化钼层,并通过微区定点转移的方法转移到石墨烯层的一端;
[n0025] 3)通过机械剥离的方法从黑磷体材料上剥离出黑磷层,并通过微区定点转移的方法转移并覆盖在二硫化钼层的表面,另一端覆盖在SiO2介质层上,并且避免与二硫化钼层接触;
[n0026] 4)利用电子束曝光,热蒸发和剥离等工艺在预先转移的石墨烯层和黑磷层的一端分别沉积铬和金的源极和漏极。
[n0027] 基于二维材料设计的单载流子势垒结构,无需考虑晶格匹配的问题,材料与材料之间可以获得高质量的界面。同时,多子阻挡的非对称势垒结构相比结型器件,在相同的温度下,可以获得更低的暗电流,并且避免了构造异质结过程中复杂的掺杂工艺。由石墨烯、二硫化钼和黑磷构成的红外光电探测器具有独特的能带结构,在导带不存在电子势垒,而在价带存在较大的空穴势垒。通过构造空穴阻挡的单载流子能带结构,可以有效降低表面漏电流、多子暗电流,但是不会对光电流进行抑制。在此,n型掺杂的势垒层引入了空间电荷区,导致了缺陷辅助产生-复合电流(SRH)的产生。然而,正是由于引入的掺杂势垒层,可以使器件在零偏工作。利用窄带隙的黑磷作为吸收层,可以实现中波红外的宽光谱响应和高消光比的偏振探测。利用飞对称的势垒结构,器件实现了高灵敏的室温黑体探测和红外成像,并且器件的响应速率在2微米的激光下达到了73 微秒,在黑体光源下达到了150微秒。
[n0028] 本专利专利的优点在于:本专利基于垂直结构的范德瓦尔斯单载流子势垒结构,在反向偏压下,多子被空穴势垒阻挡,而光电流不会被抑制,有效降低了暗电流,从而提高器件的性能,实现了室温的中波红外黑体探测。此外,器件还具有室温工作、高灵敏、宽波段、响应快等特点,在黑体探测、偏振探测、红外成像等方面具有很大的应用前景。
[n0029] 图1为器件结构示意图。
[n0030] 图中:1衬底、2介质层、3石墨烯层、4二硫化钼层、5源极、6漏极、7 黑磷层。
[n0031] 图2为光照下红外探测器的能带图。
[n0032] 图3为红外探测器在不同黑体温度下的探测率曲线。
[n0033] 图4为红外探测器在900℃黑体和2微米激光下的响应时间。
[n0034] 图5为红外探测器在900℃黑体下的偏振探测。
[n0035] 图6为红外探测器的室温红外成像。
[n0036] 下面结合附图对本专利的具体实施方式作详细说明:
[n0037] 本专利研制了一种范德瓦尔斯非对称势垒结构的红外探测器。通过独特的非对称的势垒结构设计,可以有效地抑制暗电流,从而提高器件的探测率,最终实现了室温的黑体探测和红外成像。
[n0038] 具体步骤如下:
[n0039] 1.衬底选择
[n0040] 选用重掺杂p型硅做为衬底,SiO2介质层厚度约280±10纳米。
[n0041] 2.二维材料转移
[n0042] 通过机械剥离的方法依次剥离出石墨烯层、二硫化钼层和黑磷层三种二维材料,然后在氮气箱里通过定点转移的方法,依次把石墨烯层、二硫化钼层和黑磷层转移到SiO2介质层上,使石墨烯层在最底端,二硫化钼层覆盖在石墨烯层一端,黑磷层一端覆盖在二硫化钼层上另一端局部覆盖在SiO2介质层上,并与石墨烯层没有接触。
[n0043] 3.源极、漏极制备
[n0044] 利用电子束曝光,对电极图形进行精准定位曝光,然后用PMMA显影液进行显影;利用热蒸发技术制备金属电极,铬15纳米,金75纳米;最后用丙酮溶液浸泡10分钟,剥离金属膜,获得金属源、漏电极。
[n0045] 4.制备了三种结构参数的范德瓦尔斯非对称势垒结构的红外探测器。器件一,其中衬底为P型重掺杂的Si衬底;介质层为SiO2,厚度为280±10纳米;石墨烯层的厚度是5纳米;二硫化钼层厚度是10纳米;金属源极为Cr和Au 电极,Cr在石墨烯层上厚度约为15纳米,Au在Cr上厚度为75纳米;黑磷层厚度是40纳米;金属漏极为Cr和Au电极,Cr在黑磷层上厚度约为15纳米, Au在Cr上厚度为75纳米。器件二,其中衬底为P型重掺杂的Si衬底;介质层为SiO2,厚度为280±10纳米;石墨烯层的厚度是7.5纳米;二硫化钼层厚度是15纳米;金属源极为Cr和Au电极,Cr在石墨烯层上厚度约为15纳米, Au在Cr上厚度为75纳米;黑磷层厚度是95纳米;金属漏极为Cr和Au电极, Cr在黑磷层上厚度约为15纳米,Au在Cr上厚度为75纳米。器件三,其中衬底为P型重掺杂的Si衬底;介质层为SiO2,厚度为280±10纳米;石墨烯层的厚度是10纳米;二硫化钼层厚度是20纳米;金属源极为Cr和Au电极,Cr在石墨烯层上厚度约为15纳米,Au在Cr上厚度为75纳米;黑磷层厚度是 150纳米;金属漏极为Cr和Au电极,Cr在黑磷层上厚度约为15纳米,Au 在Cr上厚度为75纳米。三种结构参数的器件具有相似的光电性能,性能指标如图3,图4,图5和图6所示。
[n0046] 5.图1是器件结构示意图。其中:1衬底、2介质层、3石墨烯层、4二硫化钼层、5漏极、6源极、7黑磷层。
[n0047] 6.图2是光照下红外探测器的能带图。石墨烯、二硫化钼和黑磷三种材料在导带几乎不存在电子的势垒,而在价带存在一个较大的空穴势垒。当光照射在器件表面时,在吸收层黑磷处产生电子空穴对,电子在外加偏压的作用下,沿着导带被阳极收集,空穴直接被阴极收集,而石墨烯处的空穴则被二硫化钼阻挡。
[n0048] 7.图3是红外探测器在不同黑体温度下的探测率曲线。器件展现出优越的室温黑体探测能力,探测截止波长为3.8微米,峰值探测率达到2.3×1010cm Hz1/2W-1
[n0049] 8.图4是红外探测器探测在900℃黑体和2微米激光下的响应时间。上升沿的时间定义为光电流从百分十增加到百分之九十,下降沿的时间定义为光电流从百分九十减少到百分之十所需要的时间。在2微米激光下,器件的上升沿时间为73μs,下降沿时间为77μs。在900℃黑体光源下,-3dB响应频率为 2.3kHz,相应的黑体下-3dB响应时间为150μs。
[n0050] 9.图5是红外探测器在900℃黑体下的偏振探测。在没有偏振的黑体光源下,在光路中分别放置半波片和偏振片,通过调制黑体光源,在锁相上记录下不同偏振角度下的光电流,最终获得器件在黑体光源下的消光比约为3.5。表明器件可以在没有外部光学透镜的条件下,实现高性能的偏振探测。
[n0051] 10.图6是红外探测器的室温红外成像。采用类黑体光源的U形加热管作为成像目标,该目标通过透镜汇聚到探测器上。在探测器前放置一个锗滤光片,通过控制二维移动平台,逐行扫描探测目标,并把每一个像素点的光强通过电脑采集记录下来,最终形成高分辨率红外图像。在没有锁相放大器的帮助下,获得了高分辨的室温红外图像,表明该探测器具有很好的探测性能。
权利要求:
Claims (1)
[0001] 1.一种范德瓦尔斯非对称势垒结构的红外探测器,包括衬底(1),SiO2介质层(2),石墨烯层(3),二硫化钼层(4),源极(5),黑磷层(7),漏极(6),其特征在于:
所述的探测器的结构为:P型Si衬底(1)上有SiO2介质层(2),石墨烯层(3)局部覆盖在SiO2介质层(2)上,在石墨烯层(3)一端覆盖有二硫化钼层(4),在石墨烯层(3)另一端有源极(5),黑磷层(7)覆盖在二硫化钼层(4)上及石墨烯层(3)与SiO2介质层(2)未接触的部分,漏极(6)位于黑磷层(7)上;
所述的衬底(1)是P型重掺杂的Si衬底;
所述的SiO2介质层(2)厚度为280±10纳米;
所述的石墨烯层(3)的厚度是5~10纳米;
所述的二硫化钼层(4)厚度是10~20纳米;
所述的源极(5)为Cr和Au电极,Cr在石墨烯层上厚度为15纳米,Au在Cr上厚度为75纳米;
所述的黑磷层(7)厚度是40-150纳米;
所述的漏极(6)为Cr和Au电极,Cr在黑磷层上厚度为15纳米,Au在Cr上厚度为75纳米。
类似技术:
公开号 | 公开日 | 专利标题
US8299497B1|2012-10-30|Near-infrared photodetector with reduced dark current
CN108231817A|2018-06-29|一种基于二维材料/绝缘层/半导体结构的低功耗电荷耦合器件
EP2545593A2|2013-01-16|Silicon-based schottky barrier detector with improved responsivity
Xu et al.2020|High performance near infrared photodetector based on in-plane black phosphorus pn homojunction
Chen et al.2020|Ultrahigh sensitive near-infrared photodetectors based on MoTe 2/germanium heterostructure
US10784394B2|2020-09-22|Electromagnetic wave detector and electromagnetic wave detector array
Li et al.2020|Broadband InSb/Si heterojunction photodetector with graphene transparent electrode
Shi et al.2020|Silicon-based PbS-CQDs infrared photodetector with high sensitivity and fast response
CN109461789B|2020-09-11|基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器及其制备方法
CN214336728U|2021-10-01|一种范德瓦尔斯非对称势垒结构的红外探测器
Zhang et al.2021|Recent progress and challenges based on two-dimensional material photodetectors
CN112242455A|2021-01-19|一种范德瓦尔斯非对称势垒结构的红外探测器及制备方法
JP5216373B2|2013-06-19|固体撮像素子
Zhou et al.2019|$8times8 $ 4H-SiC Ultraviolet Avalanche Photodiode Arrays With High Uniformity
WO2021135062A1|2021-07-08|一种基于二维黑磷材料实现igzo光电流调控的方法
Zhou et al.2019|Hybrid graphene heterojunction photodetector with high infrared responsivity through barrier tailoring
CN109817757B|2021-02-05|一种二硒化钨薄片/氧化锌纳米带结型场效应晶体管光电探测器及其制备方法
CN111129186A|2020-05-08|一种二氧化钒和二维半导体的结型光探测器及制备方法
CN209929345U|2020-01-10|一种铁电场调控的二维材料pn结光电探测器
CN111509076B|2021-07-20|一种具有低暗电流的自驱动型光电探测器及其制备方法
CN108807678B|2021-07-09|一种pcbm受体增强型量子点光电探测单元及其制备方法和探测器
Lu et al.2021|Construction of PtSe2/Ge heterostructure-based short-wavelength infrared photodetector array for image sensing and optical communication applications
Yang et al.2021|A Self‐Powered Photodetector Based on MAPbI3 Single‐Crystal Film/n‐Si Heterojunction with Broadband Response Enhanced by Pyro‐Phototronic and Piezo‐Phototronic Effects
Zhou et al.2019|High-Uniformity 4× 4 SiC Avalanche Photodiode Array for Ultraviolet Detection
CN113013279A|2021-06-22|一种碲镉汞范德华异质结红外偏振探测器及制备方法
同族专利:
公开号 | 公开日
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
法律状态:
2021-10-01| GR01| Patent grant|
2021-10-01| GR01| Patent grant|
优先权:
申请号 | 申请日 | 专利标题
CN202022023610.7U|CN214336728U|2020-09-15|2020-09-15|一种范德瓦尔斯非对称势垒结构的红外探测器|CN202022023610.7U| CN214336728U|2020-09-15|2020-09-15|一种范德瓦尔斯非对称势垒结构的红外探测器|
[返回顶部]